USN

Fifth Semester B.E. Degree Examination, Dec.2016/Jan.2017 Introduction to Composite Materials

Time: 3 hrs. Max. Marks:100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

1	a.	Define composite material. How are they classified?	(10 Marks)
	b.	Explain clearly the role of matrix phase and reinforcement phase.	(05 Marks)

c. Justify the need of developing composite materials with aerospace applications infocus.

(05 Marks)

2 a. Sketch and explain typical epoxy curing cycle. (10 Marks)

b. Explain following with neat sketch:

(i) Structural laminates (ii) Pressure bag molding. (10 Marks)

3 a. Explain with neat sketch thermo forming and injection moulding process. (10 Marks)

b. Discuss with sketch the liquid molding and blow molding. (10 Marks)

4 a. Explain water jet cutting of composite material. (10 Marks)

b. With neat sketch, describe bonding process used in manufacturing of composite laminates.
(10 Marks)

PART - B

5 a. Derive stress-strain relations for a lamina of arbitrary orientation. (10 Marks)

b. Find the compliance and stiffness matrix for a graphite/apoxy lamina, the material properties are given as,

$$E_1 = 181$$
 GPa, $E_2 = 10.3$ GPa, $E_3 = 10.3$ GPa, $\gamma_{12} = 0.28$, $\gamma_{23} = 0.60$, $\gamma_{13} = 0.27$ $G_{12} = 7.17$ GPa, $G_{23} = 3.0$ GPa, $G_{31} = 7.00$ GPa (10 Marks)

- 6 a. Derive an expression for the modulus of elasticity of PMC under iso-strain, iso-stress condition. (10 Marks)
 - b. A Glass/epoxy lamina with 70% fiber volume fractions has following fiber and matrix properties,

 $E_f = 85 \text{ GPa}, E_m = 3.4 \text{ GPa}, \gamma_f = 0.2, \gamma_m = 0.3$

Find out following:

(i) In-plane shear modulus

(ii) Major and minor Poisson's ratio. (10 Marks)

7 a. Explain CLT and derive expression for A, B and D matrices for laminate. (10 Marks)

b. Compute [A], [B], [D] matrices for a $\left[\frac{0^{\circ}}{90^{\circ}}\right]$ laminate with the following properties

thickness of each lamina is 0.125 mm, $E_1 = 140$ GPa, $E_2 = 10$ GPa, $\gamma_{12} = 0.3$, $G_{12} = 5$ GPa. (10 Marks)

8 a. What are MMC's? Mention type of matrix and reinforcements used. (05 Marks)

b. Describe powder metallurgy technique. (10 Marks)

c. List advantage, limitations and applications of MMC's. (05 Marks)

* * * * *